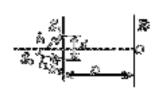
大学物理(王少杰教材)第4套阶段训练题目 光学(13章)

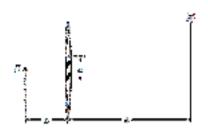
	光字(13 草)
一、填空题(共30分)	

1. (本题 3 分) 在真空中波长为 λ 的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B ,若 A 、 B 两点相位差为 3π ,则此路径 AB 的光程为。
2. (本题 5 分) 在双缝干涉实验中,两条缝的宽度原来是相等的。若其中一缝的宽度略变窄(缝中心位置不变),则干涉条纹的间距,明纹强度。
3. (本题 4 分)图示的牛顿环装置由三种透明材料构成,图中数字为相应的折射率。用单色光垂直照射,在反射光中可看到干涉条纹。在接触点 P 处形成的圆斑左半部为,右半部为。(填明或暗)
4. (本题 4 分) 在如图所示的单缝的夫琅禾费衍射实验中,将单缝 <i>K</i> 沿垂直于光的入射方向(沿图中的 <i>x</i> 方向)稍微平移,则衍射条纹(填向上移动、向下移动或不动),条纹宽度。(填变宽、变窄或不变)
5. (本题 3 分) 一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上,在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm,则入射光波长约为。
6. (本题 3 分)某元素的特征光谱中含有波长分别为 λ_1 =450 nm 和 λ_2 =750 nm 的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 λ_2 的谱线的级数将是。
7. (本题 3 分)某种透明媒质对于空气的临界角(指全反射)等于 45°,光从空气射向此媒质时的布儒斯特角是。
8. (本题 5 分) 如果从一池静水(n=1.33)的表面反射出来的太阳光是线偏振的,那么太阳的仰角(见图)大致等于,在这反射光中的 <i>E</i> 矢量的方向应。

二、推导证明题(共8分)

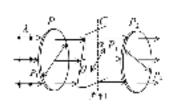

9. (本题 8 分)利用单缝夫琅禾费衍射可以测量微小的位移,具体做法如下:将 待测位移对象和一个固定的标准直边构成一条单缝,当位移发生时,接收屏上条 纹的宽度会发生变化。若 $\pm k$ 级暗纹间距离变化 dx_k ,则微小位移 da 是多少?已 知单缝的起始宽度为 a (da << a),透镜焦距为 f,入射光的波长为 λ 。

三、计算题(共56分)


(2) 相邻明条纹间的距离。

求屏上条纹的间距?

10. (本题 10 分) 在双缝干涉实验中,单色光源 S_0 到两缝 S_1 和 S_2 的距离分别为 I_1 和 I_2 ,并且 $I_1-I_2=3\lambda$, λ 为入射光的波长,双缝之间的距离为 d,双缝到屏幕的距离为 D (D>>d),如图。求: (1) 零级明纹到屏幕中央 O 点的距离;



11. (本题 10 分) 如图, 将焦距为f 的薄透镜从中间切开,切开部分上下对称移动,中部宽度为c 的缝隙用不透光的介质填充。已知光源S 到透镜的距离为a,屏到透镜的距离为b,光源发光波长为 λ ,

- 12. (本题 8 分) 在牛顿环装置的平凸透镜和平板玻璃间充以某种透明液体,观测到第 10 个明环的直径由充液前的 14.8 cm 变成充液后的 12.7 cm,求这种液体的折射率 n。
- 13. (本题 10 分) 波长为 500 nm 的平行单色光,沿与光栅平面法线成 30°方向入射到光栅,发现垂直入射时的中央明条纹位置现在变成第二级光谱的位置,求此光栅每 1 cm 上共有多少条缝?最多能看到几级光谱?
- 14. (本题 8 分)据说现代间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)如果需要识别的牌照上的字划间的距离为 5 cm,在 160 km 高空的卫星上照相机的角分辨率应为多大? (2)若光的波长按 500 nm 计算,此照相机的孔径需要多大?

15. (本题 10 分) 石英尖劈 C 夹在相互正交的两个偏振片 P_1 和 P_2 之间,如图所示,其中箭头表示 P_1 和 P_2 的偏振方向。波长为 λ 的单色平行自然光垂直入射在这三个光学器件上,求透射光形成的干涉条纹间距 Δx 。已知石英的主折射率为 n_0 和 n_e ($n_0 < n_e$),石英劈角 θ 很小,光轴平行于前表面。

四、设计应用题(共6分)

16. (本题 6 分)设计一个光学实验,测量人头发的直径。